Academic Departments, Programs
http://hdl.handle.net/11214/1
2019-12-20T22:56:04ZMaximizing the Number of Rides Served for Dial-a-Ride
http://hdl.handle.net/11214/235
Maximizing the Number of Rides Served for Dial-a-Ride
Anthony, Barbara M.; Boyd, Sara; Birnbaum, Ricky; Christman, Ananya; Chung, Christine; Davis, Patrick; Dhimar, Jigar; Yuen, David
We study a variation of offline Dial-a-Ride, where each request has not only a source and destination, but also a revenue that is earned for serving the request. We investigate this problem for the uniform metric space with uniform revenues. While we present a study on a simplified setting of the problem that has limited practical applications, this work provides the theoretical foundation for analyzing the more general forms of the problem. Since revenues are uniform the problem is equivalent to maximizing the number of served requests. We show that the problem is NP-hard and present a 2/3 approximation algorithm. We also show that a natural generalization of this algorithm has an approximation ratio at most 7/9.
2019-01-01T00:00:00ZFrom Feminism to Post-Feminism: Acts of Violence in Alicia Giménez Bartlett Ritos de muerte (1996)
http://hdl.handle.net/11214/234
From Feminism to Post-Feminism: Acts of Violence in Alicia Giménez Bartlett Ritos de muerte (1996)
Ross, Catherine Bourland
2012-01-01T00:00:00ZThe Postfeminist Question in Almudena Grandes’s Atlas de geografía humana
http://hdl.handle.net/11214/233
The Postfeminist Question in Almudena Grandes’s Atlas de geografía humana
Ross, Catherine Bourland
2007-01-01T00:00:00ZSome Families of Fixed Points for the Eccentric Digraph Operator
http://hdl.handle.net/11214/232
Some Families of Fixed Points for the Eccentric Digraph Operator
Marr, Alison; Denman, Richard; Anthony, Barbara M.
We investigate the existence of fixed point families for the eccentric digraph
(ED) operator, which was introduced in [1]. In [2], the notion of the period
ρ(G) of a digraph G (under the ED operator) was defined, and it was
observed, but not proved, that for any odd positive integer m, Cm × Cm
is periodic, and that ρ(ED(Cm × Cm)) = 2ρ(ED(Cm)). Also in [2], the
following question was posed: which digraphs are fixed points under the
digraph operator? We provide a proof for the observations about Cm ×Cm,
and in the process show that these products comprise a family of fixed
points under ED. We then provide a number of other interesting examples
of fixed point families.
2011-08-01T00:00:00Z